Magnetism of Fe clusters formed by buffer-layer assisted growth on Pt(997)
نویسندگان
چکیده
The growth and magnetism of nanometer size Fe clusters on stepped Pt surfaces is investigated by scanning tunneling microscopy (STM) and magneto-optical Kerr effect measurements (MOKE). The clusters are formed on xenon buffer layers of varying thickness and then brought into contact with the substrate by thermal desorption of the Xe. The cluster size is controlled by the thickness of the Xe layer. It is found that clusters of diameter smaller than the Pt terrace width of 2 nm are aligned along the step edges of the Pt(997), thus forming linear cluster chains. In this arrangement, the clusters are ferromagnetic with an easy axis in the direction along the surface normal. If the cluster diameter is larger than the terrace width then the alignment along the step edges is not observed and rather large agglomerates are found which are randomly distributed over the surface. Despite their increased volume, such agglomerates are superparamagnetic with in-plane easy magnetization axis. The enhanced magnetic anisotropy energy in the smallest clusters is originating from hybridization effects at the Fe-Pt interface. PACS. 61.46.-w Nanoscale materials – 68.37.Ef Scanning tunneling microscopy – 36.40.Cg Electronic and magnetic properties of clusters – 75.75.+a Magnetic properties of nanostructures
منابع مشابه
Magnetism of Fe clusters and islands on Pt surfaces
Clusters and islands of Fe atoms have been prepared by noble gas buffer layer assisted growth as well as by standard molecular beam epitaxy on Pt substrates. Xe buffer layers have been utilized to promote the formation of compact, relaxed Fe clusters with narrow size distribution. Without the Xe buffer, strained Fe islands with a characteristic misfit dislocation network are formed. Magnetizati...
متن کاملInvestigation and Modification of the Magnetism of Epitaxial Fe Structures
In this thesis, the magnetic and structural properties of layered epitaxial film systems and clusters are presented. A main achievement is the investigation of the direct correlation between magnetism and structural or morphological details of ultrathin films. For this purpose, the film structure has been accessed directly by means of surface science methods. The effect of structural changes on...
متن کاملSubstrate dependent buffer-layer assisted growth ofnanoclusters
The role of the substrate on the morphology of nanometer size clusters fabricated by buffer layer assisted growth (BLAG) was studied using scanning tunneling microscopy. Clusters of Fe and Co were deposited on Ag(111), Cu(100), Rh(111), and Pt(111) surfaces using identical BLAG parameters, which are temperature, as well as metal and buffer layer coverage. Semi-hemispherical clusters are found o...
متن کاملGrowth of Fe3O4(001) thin films on Pt(100): Tuning surface termination with an Fe buffer layer
We studied the preparation of well-ordered thin Fe3O4(001) films on a metallic substrate, Pt(100), using LEED and STM. The results show that film growth either by Fe reactive deposition in oxygen or by deposition-oxidation cycles onto pure Pt(100) results primarily in (111)-oriented surfaces. To grow Fe3O4(001) films, the preparation must include deposition of an Fe buffer layer as previously s...
متن کاملMagnetism and magnetocrystalline anisotropy of 3dtransition metal monolayers on Pt(001): a density-functional study.
We systematically investigate the effects of having Pt as a substrate and/or capping layer on the magnetism and magnetocrystalline anisotropy (MCA) of 3d transition metal (TMs; Cr, Mn, Fe, and Co) monolayers (MLs) by using a first-principles calculationl method. We found that Fe and Co MLs are ferromagnetic (FM) on a Pt(001) surface, but Mn and Cr MLs are antiferromagnetic (AFM). The magnetic m...
متن کامل